Comparison of pramipexole and modafinil on arousal, autonomic, and endocrine functions in healthy volunteers

E. R. Samuels Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Nottingham, UK.
R. H. Hou Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Nottingham, UK.
R. W. Langley Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Nottingham, UK.
E. Szabadi Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Nottingham, UK.
C. M. Bradshaw Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Nottingham, UK.

Abstract

The noradrenergic locus coeruleus is a major wakefulness-promoting nucleus of the brain, which is also involved in the regulation of autonomic and endocrine functions. The activity of the locus coeruleus is believed to be tonically enhanced by a mesocoerulear dopaminergic pathway arising from the ventral tegmental area of the midbrain. Both modafinil, a wakefulness-promoting drug, and pramipexole, a D2/D3 receptor agonist with sedative properties, may act on this pathway, with modafinil increasing and pramipexole decreasing locus coeruleus activity. The aim of this study was to compare the two drugs on alertness, autonomic and endocrine functions in healthy volunteers. Pramipexole (0.5 mg), modafinil (200 mg), and their combination were administered to 16 healthy males in a double-blind, placebo-controlled design. Methods included tests of alertness (pupillographic sleepiness test, critical flicker fusion frequency, visual analogue scales), autonomic functions (resting pupil diameter, light and darkness reflex responses, heart rate, blood pressure, salivation, core temperature), and endocrine functions (blood concentrations of prolactin, growth hormone, and thyroid stimulating hormone). Data were analysed by ANOVA. Pramipexole reduced alertness, caused pupil dilatation, increased heart rate, reduced prolactin and thyroid stimulating hormone, and increased growth hormone level. Modafinil caused small increases in blood pressure and core temperature, and reduced prolactin levels. The sedative effect of pramipexole and the autonomic effects of modafinil are consistent with altered activity in the mesocoerulear pathway; the pupil dilatation following pramipexole suggests reduced dopaminergic excitation of the Edinger-Westphal nucleus.

Keywords

pramipexole, modafinil, locus coeruleus, ventral tegmental area, Edinger-Westphal nucleus, arousal.

Introduction

Pramipexole is a non-ergot dopamine D2/D3 receptor agonist used in the treatment of Parkinson’s disease (PD) (Parkinson Study Group, 1997, 2000; Piercey, 1998; Reichmann et al., 2003). PD is a gradual-onset, neurodegenerative disorder associated with a loss of dopaminergic neurones in the substantia nigra, resulting in motor deficits including muscular rigidity, tremor, postural instability, and hypokinesia. Recently, excessive daytime sleepiness (EDS) has also been associated with PD (O’Suilleabhain and Dewey, 2002; Adler et al., 2003). Paradoxically, the dopamine receptor agonists used to treat PD and stimulate the dopamine receptors in the striatum are often sedative, including pramipexole (pramipexole: Hauser et al., 2000a; ropinirole: Ferreira et al., 2002; pergolide: Ulivelli et al., 2002; bromocriptine and cabergoline: Paus et al., 2003; piribedil: Tan, 2003). Thus a situation occurs where both dopamine neurone loss (causing dopamine deficiency) and dopamine receptor agonist administration result in sedation.

It has been suggested that the sedative effect of dopamine receptor agonists may be mediated via dopaminergic neurones located in the ventral tegmental area (VTA) of the midbrain and...
the PST total power and PUI measures. Conversely, modafinil is expected to increase the subjective rating of alertness in the CFFF, while decreasing the VAS and the frequency detectable in the CFFF, while increasing the tonic excitatory activation of the LC by the dopaminergic VTA.

The sedative and alerting effects of these treatments are measurable using various tests: visual analogue scales (VAS), critical flicker fusion frequency (CFFF) test, and the pupillographic sleepiness test (PST). The PST derives two measures from the changing diameter of the pupil over time: total power of pupil fluctuations and the pupillary unrest index (PUI), which sums the mean movement of the diameter of the pupil per minute over the 11 minutes of the test (Lüdtke et al., 1998). Therefore, an increase in PUI relates to an increase in pupil fluctuation and an increase in sedation (Wilhelm et al., 2001). It has been shown that the PST has been used successfully to detect the sedative effect of drugs (Phillips et al., 2000a, 2000b; Hou et al., 2005). It is hypothesized that pramipexole will reduce the subjective rating of alertness in the VAS and the frequency detectable in the CFFF, while increasing the PST total power and PUI measures. Conversely, modafinil is expected to increase the subjective rating of alertness in the VAS and the frequency detectable in the CFFF, while decreasing the PST total power and PUI measures.

The noradrenergic LC, apart from promoting arousal, is also involved in autonomic regulation. In general, and together with other noradrenergic nuclei, it contributes to central sympathetic outflow and exerts an inhibitory influence on parasympathetic activity (Szabadi and Bradshaw, 1996). LC activation therefore results in alerting, sympathomimetic, and parasympatholytic effects. The autonomic consequences of LC activation include pupil dilatation, alterations in the kinetics of the light reflex response (increase in latency, reduction in amplitude, shortening of recovery time) and the darkness reflex response (increases in initial velocity and amplitude, decrease in latency), increases in blood pressure and heart rate, a reduction in salivation, and an increase in core body temperature (Szabadi and Bradshaw, 1996; Hou et al., 2005). In a previous experiment in our laboratory we obtained evidence consistent with the activation of the LC by modafinil (Hou et al., 2005). Therefore, it was predicted that pramipexole is likely to evoke effects opposite to those of modafinil.

As central noradrenergic and dopaminergic neurones are involved in neuroendocrine function, the levels of prolactin, growth hormone (GH), and thyroid stimulating hormone (TSH) are expected to be influenced by drugs which interact with central catecholaminergic neurotransmission. Indeed, it has been reported that pramipexole reduces prolactin and TSH levels and increases GH levels (Schilling et al., 1992). No effects on GH levels have been found following modafinil (Brun et al., 1998), but to our knowledge the effects of modafinil on TSH and prolactin have not been reported.

The aim of this paper was therefore to examine the effects of single doses of pramipexole, modafinil, and the combination of pramipexole and modafinil, on measures of arousal, autonomic function (pupillary activity, cardiovascular functions, core temperature, and salivary output), and endocrine function (blood concentrations of prolactin, GH, and TSH) in healthy human volunteers. The results will be important to further understand the role of dopamine in normal and pathological sleep-wake regulation, and for elucidating the mechanisms of action of pramipexole and modafinil.

Methods and materials

Subjects

Sixteen healthy male volunteers aged 18–36 years (mean ± SEM: 20.94 years ± 1.08 years), 166–190 cm (mean ± SEM: 180.69 ± 1.48 cm) in height and weighing 58.6–93.5 kg (mean ± SEM: 75.17 kg ± 8.65 kg) participated in the study. Subjects were all medication free for at least 3 months prior to the start of the study and completed a brief medical history and physical examination before inclusion in the study. Volunteers were required to smoke less than five cigarettes a day and were requested to avoid drinking alcohol, coffee and other caffeine-containing beverages for at least 24h before each experimental session and to avoid taking any medication for the duration of the study. Women were excluded from the study due to the slower renal clearance of pramipexole in this population (Wright et al., 1997). The study protocol was approved by the University of Nottingham Medical School Ethics Committee, and all volunteers...
 gave their written consent after reading a detailed information sheet.

Drugs

Pramipexole 0.5 mg, modafinil 200 mg, pramipexole 0.5 mg + modafinil 200 mg, and placebo were administered orally in matching capsules for double-blind administration. The doses were chosen on the basis of the current literature (pramipexole: Wright et al., 1997; modafinil: Robertson and Hellriegel, 2003; Hou et al., 2005). In each session the subjects ingested two capsules 2 hours prior to post-treatment testing: one contained pramipexole 0.5 mg or placebo and one contained modafinil 200 mg or placebo.

Design

Subjects participated in four sessions at weekly intervals, returning to the laboratory at the same time each week. Subjects were allocated to drug conditions according to a double-blind, balanced, cross-over design. The time course of the sessions was designed with regard to the pharmacokinetic profile of the two active drugs: t_{MAX} is approximately 2h following the ingestion of a single dose of pramipexole (Wright et al., 1997) or modafinil (Robertson and Hellriegel, 2003).

Tests and apparatus

Measures of alertness Level of alertness was assessed using the pupillographic sleepiness test (PST), critical flicker fusion frequency (CFFF), and a battery of visual analogue scales (VAS).

The PST was used to record spontaneous pupillary fluctuations in darkness over 11 min using a dedicated monocular television pupillometer (setup version 1.20: AMTech, Weinheim, Germany) (see for details Hou et al., 2005). The PST quantitatively analyses pupil fluctuations, which are regarded a physiological index of level of alertness (Lowenstein et al., 1963; Yoss et al., 1970). The method yields two measures of pupillary fluctuations, the pupillary unrest index (PUI: the distance travelled by the margin of the pupil over 1 min) and the total power of the pupil diameter fluctuations (obtained from a Fast Fourier Transformation).

The CFFF test, defined as the frequency at which a flickering light appears to be continuous (Smith and Misiak, 1976), was conducted conventionally. The Leeds Psychomotor Tester (Psychopharma Ltd, Surrey, UK) was used to collect eight measurements of the threshold, four with increasing frequencies and four with decreasing frequencies. The mean of the eight measurements was taken as the value of CFFF for each testing session (Abduljawad et al., 1997).

Self-ratings of alertness, contentedness, and anxiety were made using a computerized version of VAS (Norris, 1971; Bond and Lader, 1974; see for details Hou et al., 2005).

Autonomic functions Static pupillometry was used to obtain resting pupil diameter measures using a binocular infra-red video pupillometer with a calibrated internal light source (Procyon Ltd, London, UK) in darkness and at three luminance levels (6, 91, and 360 cd m$^{-2}$) (see for details Hou et al., 2005).

Dynamic pupillometry was used to record light reflex and darkness reflex responses using a binocular infra-red television pupillometer (TVC 101SB Applied Science Laboratories, Waltham, MA, USA) with a sampling rate of 50Hz and detection accuracy in excess of 0.05 mm. The pupillary light reflex response was evoked using light stimuli (green, 565 nm peak wavelength) of 200 ms duration at four incremental luminance levels (5.2, 41, 320, and 2050 cd m$^{-2}$) presented at 35 s intervals. The stimuli were presented via a light-emitting diode positioned 1 cm from the cornea of the subject’s right eye, whilst the subject fixed his gaze upon a dim red spot of light approximately 5 m in front of him.

The parameters studied were: latency (time from the onset of the light stimulus to the onset of the pupil response, s), amplitude (change in pupil diameter from maximum to minimum diameter as a response to presentation of the light stimulus, mm), and 75% recovery time (the time from the minimum pupil diameter to 75% of the initial pupil diameter in darkness, s) (see for details Hou et al., 2005).

The pupillary darkness response was evoked by presenting an illuminated screen (light intensity: 1370 cd m$^{-2}$) approximately 90 cm in front of the subject for 10 s after a period of dark adaptation. As the screen was switched to darkness for 20 s the darkness reflex was recorded. This cycle was repeated and the means of the parameters of the two responses were calculated. The parameters studied were: amplitude (change in pupil diameter from minimum to maximum diameter as a response to the removal of the background luminance, mm), latency (time from the offset of the light to the onset of the pupil response, s), and initial velocity (time required to obtain 25% of the maximum response following the onset of the response, mm s$^{-1}$).

Blood pressure and heart rate were measured conventionally using an electrocardiogram sphygmomanometer, in both the standing and supine positions. Temperature was measured using a Braun Pro4000 tympanic thermometer (Welch Allyn UK Ltd, Buckinghamshire, UK) placed in the ear canal. A measure of salivation was derived by placing three cotton wool dental rolls in the mouth (two buccally and one sublingually) and recording the increase in their weight over a 1 minute period (Peck, 1959; Arya et al., 1997; Szabadi and Tavernor, 1999). The test was repeated twice with a 5 minute interval, and the mean of the two measurements was taken as an index of salivary output.

Endocrine functions A 10 ml blood sample was taken and analysed for concentrations of the hormones prolactin and thyroid stimulating hormone by enzyme immunoassay and for growth hormone by chemiluminescence immunoassay in the Clinical Chemistry Laboratory (Queen’s Medical Centre, Nottingham).

Procedure

After a 15 minute acclimatization period, subjects completed 30 minutes of pre-treatment testing, including standing and supine heart rate and blood pressure, temperature, salivation, CFFF, VAS, and pupil diameter. Two hours after ingestion of the capsules the post-treatment tests were conducted over 45 minutes, including standing and supine heart rate and blood pressure, tem-
perature, salivation, CFFF, VAS, pupil diameter, PST, light reflex responses, darkness reflex responses, and blood sampling.

Data analysis

Measures of alertness Pre-treatment/post-treatment differences for the CFFF were calculated for further analysis. Self-rated values of ‘alertness’, ‘anxiety’ and ‘contentedness’ were derived from the VAS scores after weighting on these factors (Bond and Lader, 1974). Pre-treatment/post-treatment differences for these ratings were calculated for further analysis. Post-treatment measures of the PST parameters power and PUI were used for statistical analysis.

Autonomic functions Autonomic function parameters recorded included pupillary and non-pupillary measures. Resting pupil diameter measures in darkness and at different levels of luminance were averaged across the right and left eyes and analysed using pre-treatment and post-treatment values separately. Reflex measures (latency, amplitude, and 75% recovery time of the light reflex response; latency, amplitude, and initial velocity of the darkness reflex response) taken from the left eye were analysed using post-treatment values. Pre-treatment/post-treatment differences were not calculated for these pupillary functions since measurements were taken at different luminance levels, and calculating the difference would have eliminated the effect of luminance on the measures studied. Non-pupillary measures included cardiovascular functions (standing and supine heart rate, standing and supine diastolic and systolic blood pressure), salivation, and temperature, and were analysed using pre-treatment/post-treatment differences. Prolactin, GH, and TSH effects were analysed using post-treatment blood concentration values.

Statistics

All pre-treatment values were analysed using one- or two-way ANOVA (treatment, or luminance × treatment) to find any session effects within the results. When no significant pre-treatment session effects were found, pre-treatment/post-treatment differences were taken as the dependent variable where appropriate. All data were analysed using repeated measures ANOVA. The data were initially checked for homogeneity of variance and skew, and subjected to a log10 or reciprocal transformation where indicated (transformations were conducted for severe skew only, as ANOVA is robust against moderate violations of the assumption of normality; Howell, 2002). One-way ANOVA with drug condition (four levels) as the within subjects factor was used to compare the effects of drug condition on PST, CFFF, VAS, darkness reflexes, blood pressure, heart rate, salivation, temperature, prolactin levels, GH levels, and TSH levels. Two-way ANOVA with drug condition (four levels) and light intensity (four levels) as the within subjects factors was used to compare the effects of drug and light intensity on pupil diameter and light reflex responses. All significant main effects were further analysed using Dunnett’s corrected t-test (df = 45, k = 4); active treatment conditions were compared with placebo (criterion of significance p < 0.05).

For some measures of autonomic function the whole dataset derived from the group of 16 subjects could not be included in the analysis due to the corruption of some data points for technical reasons. Therefore subjects whose datasets were not complete were excluded from the analysis (light reflex response amplitude: three subjects [5.2 cd m−2: three subjects, 41 cd m−2: one subject, 320 cd m−2: one subject, 2050 cd m−2: one subject], light reflex response latency: three subjects [5.2 cd m−2: three subjects, 41 cd m−2: one subject, 320 cd m−2: one subject, 2050 cd m−2: one subject], light reflex response 75% recovery time: 11 subjects [5.2 cd m−2: four subjects, 41 cd m−2: four subjects, 320 cd m−2: four subjects, 2050 cd m−2: six subjects], supine heart rate: four subjects, standing heart rate: one subject, supine systolic blood pressure: one subject, standing systolic blood pressure: two subjects, supine diastolic blood pressure: one subject, standing diastolic blood pressure: two subjects, temperature: eight subjects).

Results

All pre-treatment values were analysed initially using ANOVA to find any session effects within the results. No significant differences were found between drug conditions pre-treatment (p > 0.05) and so pre-treatment/post-treatment differences were used as dependent measures of condition effect, where appropriate.

Alertness

The effects of drug condition on the CFFF, the PST, and the three factors of the VAS are shown in Fig. 1.

CFFF There was a significant drug condition effect (F3,45 = 3.63, p < 0.05), with pramipexole significantly reducing this measure.

PST The pupillary unrest index (PUI; log10 transformation) showed a significant effect of drug condition (F3,45 = 7.65, p < 0.001), where pramipexole increased this measure. A significant effect of drug condition was also found in total power of pupil diameter fluctuations (log10 transformation; F3,45 = 8.62, p < 0.001), where both pramipexole and the combination treatment increased the measure.

VAS The alertness factor of the VAS showed a significant effect of drug condition (F3,45 = 17.99, p < 0.001), with reductions in alertness following pramipexole and the combination treatment. Similarly, the contentedness factor of the VAS showed a significant effect of drug condition (F3,45 = 5.26, p < 0.01), with pramipexole reducing contentedness. Drug condition had no effect on anxiety (F3,45 = 0.90, NS).

Pupillary functions

Pupil diameter The effects of treatments on pupil diameter at different light intensities are shown in Fig. 2. There was a significant effect of drug condition (F3,45 = 4.66, p < 0.01) and light intensity (F1,45 = 303.45, p < 0.001), and a trend for a significant interaction (F1,135 = 1.72, p = 0.091). Analysis of pupil diameter at
each light intensity condition separately, using one-way ANOVA, demonstrated a significant difference between active treatments and placebo at 6 cd m\(^{-2}\) (F\(_{3,45}\) = 2.87, p < 0.05), at 91 cd m\(^{-2}\) (F\(_{3,45}\) = 5.33, p < 0.01), and at 360 cd m\(^{-2}\) (F\(_{3,45}\) = 3.02, p < 0.05); there were no significant drug condition differences in darkness (F\(_{3,45}\) = 0.50, NS). Pramipexole (91 cd m\(^{-2}\) and 360 cd m\(^{-2}\)) and the combination of pramipexole and modafinil (6 cd m\(^{-2}\), 91 cd m\(^{-2}\), and 360 cd m\(^{-2}\)) caused pupil dilatation.

Light reflex The effects of treatments on the amplitude and latency of the light reflex response are shown in Fig. 3. For amplitude, there was a significant effect of drug condition (F\(_{3,36}\) = 2.69, p = 0.093), and a significant effect of light intensity (F\(_{3,36}\) = 8.4, p < 0.01), but no interaction (F\(_{3,108}\) = 1.13, NS). Analysis of light reflex amplitude at each light intensity revealed a significant effect of drug condition at 41 cd m\(^{-2}\) (F\(_{3,42}\) = 4.07, p < 0.05), and a trend for significance at 320 cd m\(^{-2}\) (F\(_{3,42}\) = 2.42, p = 0.08), but not at 5.2 cd m\(^{-2}\) (F\(_{3,42}\) = 2.08, NS) or 2050 cd m\(^{-2}\) (F\(_{3,42}\) = 1.99, NS). Pramipexole reduced light reflex amplitude at 41 cd m\(^{-2}\) and 320 cd m\(^{-2}\). For latency there was a trend for an effect of drug condition (F\(_{3,36}\) = 2.64, p = 0.1) and a significant effect of light intensity (F\(_{3,36}\) = 30.72, p < 0.001) (Fig. 3), but again there was no interaction (F\(_{3,108}\) = 0.98, NS). Analysis of light reflex latency at each light intensity showed a trend for a difference at 320 cd m\(^{-2}\) (F\(_{3,42}\) = 2.69, p = 0.058), but no significant effects at 5.2 cd m\(^{-2}\) (F\(_{3,42}\) = 0.63, NS), 41 cd m\(^{-2}\) (F\(_{3,42}\) = 1.33, NS) or 2050 cd m\(^{-2}\) (F\(_{3,42}\) = 2.0, NS). The combination of pramipexole and modafinil caused an increase in latency (320 cd m\(^{-2}\)). For 75% recovery time (log\(_{10}\) transformation) there was a trend for an effect of drug condition (F\(_{3,32}\) = 2.69, p = 0.093), and a significant effect of light intensity (F\(_{3,32}\) = 8.4, p < 0.01), but no interaction (F\(_{3,96}\) = 0.84, NS). Analysis of 75% recovery time at each light intensity showed a trend for significance at 5.2 cd m\(^{-2}\) (F\(_{3,39}\) = 2.66, p = 0.066) and 41 cd m\(^{-2}\) (F\(_{3,36}\) = 2.66, p = 0.066), but no significant effects at 320 cd m\(^{-2}\) (F\(_{3,33}\) = 0.74, NS) or 2050 cd m\(^{-2}\) (F\(_{3,24}\) = 0.51, NS).
The significant effects of drug condition on any of the darkness reflex response are shown in Fig. 3. There were no differences in cardiovascular functions due to treatment. The four treatment conditions are indicated by different symbols (see inset). Ordinate: absolute pupil diameter (mm); abscissa: level of luminance (cd m⁻²). Each point corresponds to the mean obtained for the group (n = 16). Vertical bars represent two standard errors of the difference (2SED) obtained from the interaction term of the analysis of variance. Pramipexole alone and in combination with modafinil increased pupil diameter. Pramipexole: +p < 0.05, pramipexole and modafinil: *p < 0.05 (Dunnett's test: comparison with placebo condition).

Table 1 Non-pupillary autonomic functions (mean ± SEM)

<table>
<thead>
<tr>
<th></th>
<th>Pre-drug</th>
<th>Post-drug</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>placebo</td>
<td>pramipexole</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>supine</td>
<td>63.5 ± 2.71</td>
<td>58.25 ± 1.78</td>
</tr>
<tr>
<td>standing</td>
<td>76.06 ± 2.70</td>
<td>72.13 ± 2.63</td>
</tr>
<tr>
<td>orthostatic change</td>
<td>14 ± 2.61</td>
<td>13.86 ± 2.12</td>
</tr>
<tr>
<td>Systolic BP (Hg mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>supine</td>
<td>129.88 ± 2.65</td>
<td>126.13 ± 2.45</td>
</tr>
<tr>
<td>standing</td>
<td>127.25 ± 2.93</td>
<td>129.31 ± 3.15</td>
</tr>
<tr>
<td>orthostatic change</td>
<td>−2.13 ± 2.27</td>
<td>3.8 ± 3.21</td>
</tr>
<tr>
<td>Diastolic BP (Hg mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>supine</td>
<td>72.25 ± 1.86</td>
<td>69.69 ± 1.75</td>
</tr>
<tr>
<td>standing</td>
<td>76.25 ± 1.79</td>
<td>75.94 ± 1.83</td>
</tr>
<tr>
<td>orthostatic change</td>
<td>4.8 ± 1.97</td>
<td>6.6 ± 1.74</td>
</tr>
<tr>
<td>Salivation (g)</td>
<td>0.98 ± 0.17</td>
<td>0.80 ± 0.19</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>36.37 ± 0.16</td>
<td>36.04 ± 0.19</td>
</tr>
</tbody>
</table>

Darkness reflex The effects of the treatments on the parameters of the darkness reflex response are shown in Fig. 3. There were no significant effects of drug condition on any of the darkness reflex parameters (p > 0.05).

Cardiovascular functions

The values obtained (mean ± SEM) for heart rate and blood pressure both before and after treatment are shown in Table 1.

Heart rate Pre-treatment/post-treatment differences were used to analyse heart rate changes following drug administration in both supine and standing positions (Fig. 4). Standing values showed a significant effect of drug condition (F₁,₁₀ = 4.01, p < 0.05), where pramipexole and the combination of pramipexole and modafinil both increased heart rate. No significant effect of drug condition was found in the supine position (F₁,₁₀ = 1.62, p = 0.203). There was no effect of treatment on the orthostatic change in heart rate from lying to standing position (F₁,₁₀ = 1.40, NS).

Blood pressure Pre-treatment/post-treatment differences were used to analyse systolic and diastolic blood pressure changes in both supine and standing positions (Fig. 4). Standing values showed a significant effect of drug condition on diastolic blood pressure (F₁,₁₀ = 3.89, p < 0.05), with modafinil increasing this measure, and a trend for an effect of drug condition on systolic blood pressure (F₁,₁₀ = 2.60, p = 0.066), with a trend for modafinil to increase this measure (p < 0.1). Supine values showed a trend for an effect of drug condition on systolic blood pressure (F₁,₁₀ = 2.31, p = 0.09), where modafinil increased this measure.
There was no significant effect of drug condition on supine diastolic blood pressure ($F_{3,42} = 0.49$, NS). There was no effect of treatment on the orthostatic change from lying to standing position in systolic ($F_{3,39} = 1.03$, NS) or diastolic ($F_{3,39} = 2.23$, NS) blood pressure.

Salivation

The values obtained (mean ± SEM) for salivation both before and after treatment are shown in Table 1.

Pre-treatment/post-treatment differences were used to analyse changes in salivation following the four drug conditions. No significant differences were found ($F_{3,45} = 1.22$, NS).

Temperature

The values obtained (mean ± SEM) for temperature both before and after treatment are shown in Table 1.

Pre-treatment/post-treatment differences (reciprocal transformation) were used to analyse changes in temperature following the four drug conditions. The ANOVA revealed a significant effect of drug condition on temperature ($F_{3,21} = 4.02$, $p < 0.05$), where modafinil increased temperature compared to placebo.

Endocrine functions

The effect of drug treatments on endocrine functions is shown in Fig. 5.

Prolactin

Post-treatment blood concentrations (\log_{10} transformation) of prolactin showed a significant effect of drug condition ($F_{3,45} = 73.15$, $p < 0.001$), where pramipexole, modafinil, and the combination of pramipexole and modafinil all reduced prolactin levels.

Growth hormone

Post-treatment blood concentrations (\log_{10} transformation) of GH showed a significant effect of drug condition ($F_{3,45} = 42.02$, $p < 0.001$), where pramipexole and the combination of pramipexole and modafinil increased GH levels. There was a significant negative correlation between GH level in the

Figure 4 Cardiovascular activity: pre-treatment/post-treatment differences in supine (left) and standing (right) heart rate (bpm; top), systolic blood pressure (mm Hg; middle) and diastolic blood pressure (mm Hg; bottom). Columns correspond to mean changes in the parameters for the group (n = 16). Treatment condition is indicated at the bottom of the graphs; the ordinate axis represents the change in the parameter from pre-treatment values. Vertical bars represent standard errors of the mean (SEM). *p < 0.05 (Dunnett’s test: comparison with placebo condition).

placebo condition (baseline) and the change from baseline following modafinil (Pearson’s product moment correlation coefficient r = −0.77).

Thyroid stimulating hormone Post-treatment blood concentrations (log₁₀ transformation) of TSH showed a significant effect of drug condition (F₁,₄₅ = 10.15, p < 0.001), where pramipexole and the combination of pramipexole and modafinil reduced TSH levels.

General behavioural effects of treatments
Most subjects reported feeling highly sedated following pramipexole, with frequent periods of sleeping occurring between pre-treatment testing and post-treatment testing. A number of these subjects reported sedation in only one of the four sessions (although this effect was not reflected in the laboratory measures of alertness, where both the VAS alertness factor and the total power of pupil diameter fluctuations in the PST show sedation in two sessions). Modafinil was generally well tolerated, however...
pramipexole often resulted in nausea and dizziness and on five occasions in vomiting.

Discussion

In this study we used single doses of the wakefulness-promoting drug modafinil and the anti-Parkinsonian drug pramipexole. The dosages used were selected on the basis of previous reports. Many investigators have used a single dose of 200 mg modafinil (Turner et al., 2003; Randall et al., 2003, 2004; Hou et al., 2005), and the single dose of 0.5 mg pramipexole was within the range used in pharmacokinetic and endocrine reports with this drug in healthy volunteers (Schilling et al., 1992; Wright et al., 1997).

Single doses of 0.5 mg pramipexole showed robust sedative effects as evidenced by increases in PST measures and reductions in CFFF and VAS alertness measures. This result is consistent with clinical observations of the sedative effects of pramipexole when used in the treatment of PD (Parkinson Study Group, 1997, 2000; Hauser et al., 2000a; O’Suilleabhain and Dewey, 2002). The sedation induced by pramipexole has been attributed to reduction in the activity of dopaminergic neurones in the VTA brought about by the stimulation of inhibitory D2 autoreceptors on these neurones (Rye and Jankovic, 2002). The neural substrate of the inhibitory influence of the LC on the Edinger-Westphal nucleus (EWN) (Szabadi and Bradshaw, 1996; Phillips et al., 2000a, 2000b; see also Fig. 6). Therefore, the observation of an increase in pupil diameter following pramipexole administration was an unexpected finding.

Furthermore, in a clinical case study, modafinil was found to antagonize the sedative effect of pramipexole when used for the treatment of PD (Hauser et al., 2000b). However, in the present experiment modafinil failed to antagonize the effects of pramipexole on measures of alertness in healthy volunteers. It is possible that the dose of modafinil used in this study was too low to supersede the robust sedative effect of pramipexole.

As pramipexole exerted prominent sedative effects, it was expected to cause miosis since there is a close association between the sedative and miotic effects of drugs (see pp. 786–788 in Loewenfeld, 1993). The miotic effect of sedative drugs is likely to be mediated by the locus coeruleus: a decrease in the level of arousal is associated with a decrease in LC activity, which would result in a reduction in the sympathetic outflow to the iris, and an increase in the parasympathetic output, due to the withdrawal of the inhibitory influence of the LC on the Edinger-Westphal nucleus (EWN) (Szabadi and Bradshaw, 1996; Phillips et al., 2000a, 2000b; see also Fig. 6). Therefore, the observation of an increase in pupil diameter following pramipexole administration was an unexpected finding.

Analysis of the kinetics of the light reflex response (prolongation of latency and a reduction in amplitude) indicates that the pramipexole-induced mydriasis was due to a parasympatholytic effect (see pp. 726–727 in Loewenfeld, 1993), rather than a sympathomimetic effect on the pupil. As pramipexole has little affinity for muscarinic cholinoreceptors (Mierau, 1995; Millan et al., 2002), it is unlikely that the parasympatholytic effect of the drug on the pupil was the result of the blockade of muscarinic cholinoreceptors in the iris. Indeed, in the present experiment pramipexole failed to modify salivary output, which is a very sensitive index of muscarinic cholinoreceptor blockade (Szabadi and Tavernor, 1999). Therefore, the parasympatholytic effect of pramipexole on the pupil is likely to be due to a central mechanism.

The central parasympatholytic mechanism mediating the mydriatic effect of pramipexole is likely to involve the EWN, which is the preganglionic parasympathetic nucleus controlling pupil constriction. Dopamine receptors are also likely to be involved, since pramipexole’s only pharmacological action is the stimulation of D2/D3 dopamine receptors. Thus the question arises...
as to where these dopamine receptors may be located in relation to the EWN. Apart from a well documented dopaminergic output from the VTA to the LC (Swanson, 1982; Ornstein et al., 1987), the VTA also sends projections to a number of other brainstem nuclei including neurones in the region of the peri-aqueductal grey matter of the midbrain (Swanson, 1982). Furthermore, cells expressing D2 receptor mRNA have been identified in the peri-aqueductal grey, the highest numbers being found in the ventral division (Mansour and Watson, 1995) where the oculomotor nuclear complex, incorporating the EWN, is situated. Therefore, the EWN may receive a dopaminergic input from the VTA, and we postulate that this input may exert a tonic excitatory influence on the EWN via postsynaptic D2 receptors (see Fig. 6). Thus, the ‘switching off’ of the VTA neurones by pramipexole may lead to
the withdrawal of the tonic dopaminergic activation of the EWN, thereby leading to a central parasympatholytic effect on the pupil. It should be noted that this effect is expected to be attenuated by a reduction in LC activity, resulting from the ‘switching off’ of the tonic dopaminergic excitation of the LC by pramipexole which in turn would lead to a central parasympathomimetic effect on the pupil (Szabadi and Bradshaw, 1996). However, the direct effect of the ‘switching off’ of the VTA on the EWN is likely to supersede the indirect effect mediated via the LC since the observed change is an increase, rather than a decrease, in pupil diameter.

Any effect on pupil diameter mediated via the EWN is expected to be ‘light-dependent’, i.e. it should increase with increasing levels of ambient lumiance as the contribution of the parasympathetic activity to pupil diameter increases (see Fig. 6). This effect of light has been demonstrated on the miotic effect of clonidine, a drug which indirectly increases EWN activity (Szabadi and Bradshaw, 1996). The present results show that not only a miotic effect due to increased activity of the EWN shows light dependence, but also a mydriatic effect due to a reduction in EWN activity: the pupil dilatation following pramipexole administration could be observed only at the two higher lumiance levels, when the effect of the removal of the tonic excitation of the EWN was presumably the greatest.

Modafinil had no effect on pupil function in the present experiment. This is in contrast with a previous report from this laboratory which described marked effects of the same single dosage of modafinil on pupillary function, consistent with an increase in the sympathetic outflow to the iris (Hou et al., 2005). There is no immediate explanation for the discrepancy between the results of the present study and those reported by Hou et al. (2005). As in both studies a relatively small number of subjects were used, it is possible that inter-individual variations in pharmacokinetics leading to different drug concentrations at relevant sites in the brain may have contributed to the different results.

Pramipexole increased heart rate in the standing position, consistent with previous reports (Schilling et al., 1992; Wright et al., 1997). This effect may be due to either an increase in sympathetically mediated cardio-acceleration or to a decrease in cardio-deceleration mediated by the parasympathetic vagus nerve. As the LC may contribute to sympathetically mediated cardio-acceleration via descending coeruleo-spinal neurones (Hancock and Foqueroussse, 1976; Guyenet, 1980), the withdrawal of dopaminergic LC activation by pramipexole is expected to lead to a decrease rather than an increase in heart rate. However, the effect of pramipexole may have been mediated primarily via an action on dopaminergic neurones projecting from the paraventricular nucleus of the hypothalamus to the dorsal nucleus of the vagus (Swanson et al., 1981), which may exert an activating influence on the vagus (See Fig. 6). As these hypothalamic dopaminergic neurones have been shown to be controlled by inhibitory D2 autoreceptors (Moore and Lookingland, 1995), pramipexole, by stimulating these receptors, may have removed the dopaminergic facilitation of vagus activity leading to an increase in heart rate. In contrast to pramipexole, modafinil had no effect on heart rate, consistent with previous reports using the same single dose of modafinil as in the present experiment (Rush et al., 2002; Turner et al., 2003; Makris et al., 2004; Hou et al., 2005).

Pramipexole had no effect on either systolic or diastolic blood pressure in this study. This observation is in agreement with previous reports of the lack of effect of a range of doses of pramipexole, including the dose used in the present study, on blood pressure in healthy volunteers (Schilling et al., 1992; Wright et al., 1997). On the other hand, modafinil increased diastolic blood pressure in the standing position and there was a similar trend for systolic blood pressure. Previous reports on the effect of modafinil on blood pressure, using the same single dose as was used in the present experiment, vary between no effect (systolic blood pressure: Rush et al., 2002; Makris et al., 2004; Hou et al., 2005; diastolic blood pressure: Turner et al., 2003; Hou et al., 2005; mean arterial pressure: Heitman et al., 1999; Rush et al., 2002) and small increases (systolic blood pressure: Turner et al., 2003; diastolic blood pressure: Makris et al., 2004). Nevertheless, higher single doses (400 mg and above) of modafinil have been reported to evoke consistent increases in both systolic and diastolic blood pressure (Caldwell et al., 2000; Rush et al., 2002; Makris et al., 2004; Taneja et al., 2005). The pressor effect of modafinil has been attributed to central sympathetic activation (Taneja et al., 2005).

The central sympathetic activating effect of modafinil is also highlighted by an increase in body core temperature evoked by the drug in the present experiment. This observation is in agreement with a previous report (Brun et al., 1998), and is opposite to the temperature lowering effect of centrally acting sympatholytic drug clonidine (Arya et al., 1997). In contrast to modafinil, pramipexole had no effect on core temperature.

Neither pramipexole nor modafinil affected salivary output. The lack of effect of modafinil on salivation is in agreement with an earlier report (Hou et al., 2005).

We also examined the effects of pramipexole and modafinil on the blood concentration of three pituitary hormones whose secretion is either directly or indirectly, via peptidergic neurones (Reichlin, 1998), controlled by the dopaminergic and noradrenergic neuronal systems of the brain. The relevant dopaminergic neurones are situated in the infundibular nuclei (arcuate and periventricular nuclei) of the median eminence, whereas the noradrenergic neurones project to the peptidergic neurones of the median eminence from noradrenergic neurones of the lower brainstem (mainly A1/A5 but also the LC) (see Fig. 7).

The secretion of prolactin by the lactotropes of the pituitary gland is largely controlled by dopaminergic neurones which secrete dopamine either directly into the portal circulation or synapse with peptidergic neurones which secrete prolactin release-inhibiting factor (PIF). Both dopamine and PIF reduce the secretion of prolactin. In the present experiment, pramipexole, like other D2 dopamine receptor agonists (Svet-Moldovsky et al., 1981; Ben-Jonathan and Hnasko, 2001), decreased the concentration of prolactin in the blood in agreement with a previous report (Schilling et al., 1992). Modafinil also caused a reduction in the blood level of prolactin, albeit this was less than that evoked by pramipexole. This effect of modafinil, according to our knowledge, has not been reported previously. It is an intriguing
Figure 7 Simplified diagram to indicate the principle pathways of the catecholaminergic control of the secretion of the pituitary hormones growth hormone (GH), prolactin (PRL), and thyroid stimulating hormone (TSH). The four compartments involved are: brain (VTA = ventral tegmental area; LC = locus coeruleus; PVN = paraventricular nucleus; TIN = tuberoinfundibular nuclei, including arcuate nucleus and periventricular nucleus), portal circulation (TRH = thyrotropin releasing hormone; GHRH = growth hormone releasing hormone; DA = dopamine; PIF = prolactin inhibiting factor; SS = somatostatin), pituitary gland (ST = somatotropes; LT = lactotropes; TT = thyrotropes), and systemic circulation. The neurones involved are dopaminergic neurones (black circles), noradrenergic neurones (hatched circles), and peptidergic neurones (white circles). Excitatory connections are indicated by continuous lines and inhibitory connections by broken lines. Catecholamine receptors involved are: D2 dopamine receptor (excitatory or inhibitory, as indicated), α1-adrenoceptor (excitatory) and α2-adrenoceptor (inhibitory). The hypothalamus controls the secretion of pituitary hormones via hypophysiotropic hormones, which include dopamine and a number of peptides. These hormones are secreted into the portal circulation (stimulatory hormones = black triangles; inhibitory hormones = white triangles). Each hypophysiotropic hormone may regulate the secretion of more than one pituitary hormone by acting at somatotropes, lactotropes, and thyrotropes in the anterior pituitary. There are inhibitory D2 dopamine receptors on the lactotropes and thyrotropes. Pramipexole (P) acts at inhibitory D2 autoreceptors on dopaminergic neurones in the VTA, on stimulatory D2 receptors on dopaminergic neurones in the hypothalamus, and on inhibitory D2 receptors on lactotropes and thyrotropes in the pituitary. Modafinil (M) acts at the dopaminergic synapse on noradrenergic neurones by blocking the re-uptake of dopamine and thereby enhancing the dopaminergic excitation of these neurones. Based on Reichlin (1998).
possibility that this effect of modafinil may be due to the activation of central noradrenergic neurones which project to the arcuate nucleus (O’Donohue et al., 1979) where they activate excitatory a1-adrenoceptors (Kang et al., 2000) (see Fig. 7). The co-administration of modafinil with pramipexole evoked a reduction in prolactin level which was comparable to that produced by pramipexole alone, suggesting that the reduction evoked by pramipexole was maximal and could not be enhanced any further.

Growth hormone (GH) secretion is under the dual control of growth hormone releasing hormone (GHRH), which stimulates GH release, and somatostatin (SS), which inhibits GH release (Reichlin, 1998). Both dopaminergic and noradrenergic neurones modulate GH secretion by interacting with the GHRH and SS neurones (see Fig. 7). We have found that pramipexole, like other D2 dopamine receptor agonists (Lal et al., 1975; Müller et al., 1991; for review see Müller et al., 1999), increased GH secretion in agreement with a previous report (pramipexole: Schilling et al., 1992). It is believed that the GH release-promoting effect of the dopaminominimetics drugs is due primarily to a reduction in the release of SS (Vance et al., 1987; Giustina and Veldhuis, 1998). In the present experiment, modafinil had no effect on GH level, as assessed by the group mean, in agreement with a previous report by Brun et al. (1998). It should be noted, however, that the GH levels in the placebo condition were extremely low (<0.5 mIU/L), in fact near the limit of detection of the assay, in nine subjects, and therefore a possible reduction in GH level induced by modafinil could be detected only in the remainder of the group. When the relationship between GH level and the response to modafinil was examined in individual subjects, a significant negative correlation was found between baseline GH level and the response to modafinil, suggesting a possible inhibitory action of modafinil on GH output. The inhibitory effect of modafinil on GH secretion is further illustrated by the apparent attenuation of the pramipexole-evoked increase in GH secretion by modafinil (see Fig. 5). The inhibition of GH secretion by modafinil is likely to have been mediated via GHRH neurones: modafinil, by stimulating central noradrenergic neurones, may have increased the noradrenergic inhibition of GHRH neurones (see Fig. 7).

The secretion of thyroid-stimulating hormone (TSH; thyrotropin) is largely controlled by thyrotropin-releasing hormone (TRH) secreted by peptidergic neurones (Mason et al., 1995). In addition to the stimulating effect of TRH, TSH secretion is inhibited by SS and dopamine released by neurones in the tuberoinfundibular area (Reichlin, 1998). Pramipexole reduced the level of TSH in agreement with a previous report (Schilling et al., 1992). Pramipexole could have enhanced the release of dopamine into the portal circulation and stimulated inhibitory D2 dopamine receptors on the thyrotropes themselves (See Fig. 7). Modafinil had no effect on TSH secretion.

In conclusion, the effects of pramipexole on arousal, autonomic, and endocrine functions are consistent with the stimulatory effect of this drug on D2 autoreceptors in the midbrain and hypothalamus. Modafinil failed to modify the level of arousal in the present study but evoked cardiovascular, hyperthermic, and neuroendocrine effects consistent with the activation of the central noradrenergic system. The pupillary effect of pramipexole can also be related to D2 dopamine autoreceptor activation on VTA neurones, leading to the postulate of a dopaminergic neural circuit involved in the regulation of pupil function. Furthermore, the pupillary effect of pramipexole provides an example of the dissociation between sedation and miosis.

Acknowledgements

E. R. Samuels is a Scholar of the Institute of Neuroscience, University of Nottingham.

References

Hancock M B, Fougerousse C L (1976) Spinal projections from the thalamus. Modafinil failed to modify the level of arousal in the present study but evoked cardiovascular, hyperthermic, and neuroendocrine effects consistent with the activation of the central noradrenergic system. The pupillary effect of pramipexole can also be related to D2 dopamine autoreceptor activation on VTA neurones, leading to the postulate of a dopaminergic neural circuit involved in the regulation of pupil function. Furthermore, the pupillary effect of pramipexole provides an example of the dissociation between sedation and miosis.
Pramipexole and modafinil; a comparison

770 Pramipexole and modafinil; a comparison

Szabadi E, Bradshaw C M (1996) Autonomic pharmacology of

Swanson L W (1982) The projections of the ventral tegmental area and

Smith J M, Misiak H (1976) Critical flicker frequency (CFF) and psy-

Pramipexole in routine clinical practice: a prospective observational

Pramipexole and modafinil; a comparison

Pramipexole and modafinil; a comparison